Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates
نویسندگان
چکیده
The efficient production of biofuels from cellulosic feedstocks will require the efficient fermentation of the sugars in hydrolyzed plant material. Unfortunately, plant hydrolysates also contain many compounds that inhibit microbial growth and fermentation. We used DNA-barcoded mutant libraries to identify genes that are important for hydrolysate tolerance in both Zymomonas mobilis (44 genes) and Saccharomyces cerevisiae (99 genes). Overexpression of a Z. mobilis tolerance gene of unknown function (ZMO1875) improved its specific ethanol productivity 2.4-fold in the presence of miscanthus hydrolysate. However, a mixture of 37 hydrolysate-derived inhibitors was not sufficient to explain the fitness profile of plant hydrolysate. To deconstruct the fitness profile of hydrolysate, we profiled the 37 inhibitors against a library of Z. mobilis mutants and we modeled fitness in hydrolysate as a mixture of fitness in its components. By examining outliers in this model, we identified methylglyoxal as a previously unknown component of hydrolysate. Our work provides a general strategy to dissect how microbes respond to a complex chemical stress and should enable further engineering of hydrolysate tolerance.
منابع مشابه
Proteomics Profiling of Chimeric-Truncated Tissue Plasminogen activator Producing- Chinese Hamster Ovary Cells Cultivated in a Chemically Defined Medium Supplemented with Protein Hydrolysates
Background: Culture media enrichment through the addition of protein hydrolysates is beneficial for achieving higher protein expression. Methods: In this study, designing the optimum mixture of four soy and casein-derived hydrolysates was successfully performed by design of experiment and specific productivity increased in all predicted combinations. Protein profile of recombinant CHO (rCHO) ce...
متن کاملComparative expression profiling of four salt-inducible genes from Aeluropus littoralis
Abiotic stresses such as salinity influence agricultural production. Plants generally respond to stimulus conditions in a complex manner involving many genes and proteins. In the evolution process, halophyte plant Aeluropus littoralis has been proven to have abiotic stress-tolerance capacity. A. littoralis is a salt-resistant halophyte providing a wealthy genetic resource for developing salinit...
متن کاملChemogenomic profiling of Plasmodium falciparum as a tool to aid antimalarial drug discovery
The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional information about most P. falciparum genes remains a strategic hurdle. Chemogenomic profiling is an established tool for classification of drugs with similar mechanisms of action by comparing drug fitness profi...
متن کاملUnderstanding the complexity of hydrolysates
Background Hydrolysates are complex media supplements composed of many as well as different types of compounds. Within Frieslandcampina Domo’s Quality by Design project, detailed information of these compounds (annotation and quantification) has been generated. This was achieved for soy protein hydrolysates (Proyield Soy SE50MAF-UF) using metabolomics biochemical profiling. Biochemical profilin...
متن کاملInduced Acidic chitinase Expression and Scab-Resistant in Wheat Under Field Condition
Fusarium head blight (FHB) caused by Fusarium graminearum is responsible for billions of dollars in agriculture losses. The goal of the present study was evaluation the expression of acidic chitinase, one of PR proteins, in wheat defense response against different FHB induced treatments in 'Falat' as a highly susceptible and 'Sumai3' as a tolerant cultivar. These treatments contained fungi extr...
متن کامل